城市生活污水集中收集率和污水處理廠進(jìn)水濃度問題的思考
【谷騰環(huán)保網(wǎng)訊】城市污水處理廠進(jìn)水濃度偏低的問題受到行業(yè)的高度關(guān)注,研究確認(rèn)普遍存在的管網(wǎng)沉積衰減、非生活污水稀釋及其“氧化性”對生活污水還原性污染物的氧化還原衰減等是城市污水處理廠進(jìn)水BOD濃度偏低的根本原因,而沉積衰減、氧化還原衰減及非生活污水?dāng)D占管網(wǎng)和污水處理廠容積導(dǎo)致的污水溢流排放則是城市生活污水集中收集率偏低的重要原因,是我國排水系統(tǒng)有別于歐美發(fā)達(dá)國家的最典型特征。生活污水中的有機(jī)氮磷會隨著污染物衰減過程而釋放到水中,導(dǎo)致管道積泥呈現(xiàn)高碳低氮磷特征,也會直接影響污水處理廠進(jìn)水的碳氮磷比例。提出綜合采取工程措施和技術(shù)手段實現(xiàn),是現(xiàn)階段快速實現(xiàn)污水處理廠進(jìn)水BOD濃度和城市生活污水集中收集率提升的重要舉措,對恢復(fù)污水處理廠正常的碳氮磷比例關(guān)系具有重要的工程價值。
經(jīng)過多個五年規(guī)劃的全面推進(jìn),我國城市污水處理設(shè)施得到快速普及,污水處理率得到大幅度提升,但污水處理廠進(jìn)水濃度偏低的問題還比較普遍,污水直排問題仍時有發(fā)生,與綠色高質(zhì)量發(fā)展的國家戰(zhàn)略導(dǎo)向存在較大差距。2019年住房城鄉(xiāng)建設(shè)部、生態(tài)環(huán)境部、國家發(fā)改委聯(lián)合印發(fā)《城鎮(zhèn)污水處理提質(zhì)增效三年行動方案(2019—2021年)》,提出“三個基本消除”(直排口、空白區(qū)、黑臭水體)和“兩個提升”(城市生活污水收集效能、污水處理廠進(jìn)水BOD濃度)的工作要求,排水行業(yè)逐步實現(xiàn)了由污水處理向污水收集、由水量處理向污染物處理的轉(zhuǎn)變;2022年住房城鄉(xiāng)建設(shè)部、生態(tài)環(huán)境部、國家發(fā)改委、水利部聯(lián)合印發(fā)的《深入打好城市黑臭水體治理攻堅戰(zhàn)實施方案》更進(jìn)一步明確提出城市生活污水集中收集率力爭達(dá)到70%和進(jìn)水BOD濃度高于100mg/L的污水處理規(guī)模達(dá)到90%以上的目標(biāo)要求,對排水行業(yè)效能提升提出了更高要求。系統(tǒng)識別污水處理廠進(jìn)水濃度和排水系統(tǒng)效能偏低的真正原因,合理選用工程措施和技術(shù)手段,快速實現(xiàn)進(jìn)水濃度和污水收集轉(zhuǎn)輸效能提升的目標(biāo)要求,成為綠色高質(zhì)量發(fā)展新時代背景下排水行業(yè)的重大需求與挑戰(zhàn)。
01 排水管網(wǎng)的建設(shè)運行現(xiàn)狀與問題
1.1 分流制成為我國排水系統(tǒng)的主要形式
近年來我國城市排水管網(wǎng)的建設(shè)進(jìn)度基本實現(xiàn)了與污水處理能力增長率持平,根據(jù)住房城鄉(xiāng)建設(shè)部《城市建設(shè)統(tǒng)計年鑒》,2021年設(shè)市城市污水管道和雨水管道長度為36.68萬公里和33.48萬公里,分別達(dá)到2012年16.44萬公里和14.49萬公里的2.23倍和2.31倍,年增長率可達(dá)5%~10%,與6%~8%左右的年均污水處理規(guī)模增長率基本相當(dāng)。另外,我國的分流制管網(wǎng)占比要明顯高于日本、美國、德國等發(fā)達(dá)國家大都市水平,尤其是隨著分流制管網(wǎng)建設(shè)和雨污分流改造工作的持續(xù)推進(jìn),合流制管道長度占排水管道總長度的比例也已經(jīng)由2012年的接近27%降低至2021年的低于12%,合流制已經(jīng)不再是我國城市排水管網(wǎng)的主要形式。2012-2018年我國的合流制管網(wǎng)長度一直處于10.30~11.10萬公里上下浮動,而2019年提質(zhì)增效工作推進(jìn)以來,合流制管網(wǎng)總長度呈現(xiàn)逐年降低的趨勢,2021年已經(jīng)降低至9.25萬公里,充分體現(xiàn)了各地雨污分流改造工作的努力與成效,也顯現(xiàn)了在城市建成區(qū),尤其是老舊城區(qū)開展雨污分流改造工作的實施難度。圖1為2012-2021期間設(shè)市城市污水管道、雨水管道和合流制管道長度的變化曲線。
1.2 污水水質(zhì)的季節(jié)性差異并不顯著
無論是合流制管網(wǎng)還是分流制污水管網(wǎng),旱季的核心功能都是居民生活污水污染物的收集轉(zhuǎn)輸,因此在沒有雨水排入摻混的情況下,污水處理廠進(jìn)水應(yīng)表現(xiàn)出相對較高的濃度水平;而降雨期間因雨水排入稀釋,合流制管網(wǎng)服務(wù)范圍內(nèi)的污水處理廠進(jìn)水濃度會明顯低于旱季水平。為此以全國2000多座城市污水處理廠7月(代表雨季水平)和12月(代表旱季水平)的進(jìn)水BOD濃度為例進(jìn)行分析,結(jié)果表明12月進(jìn)水BOD大于150 mg/L的污水處理廠數(shù)量和規(guī)模占比分別為16.7%和22.7%,意味著旱季進(jìn)水BOD濃度相對較高的污水處理廠占比并不高,大部分并沒有顯示出非降雨期間應(yīng)有的高濃度水平,而且近年來部分城市還出現(xiàn)了旱季濃度降低的趨勢,可能與入河排污口旱季過度截污,大量低濃度非生活污水截流排入污水管網(wǎng)造成的污水稀釋等做法直接相關(guān);而7月進(jìn)水BOD小于50 mg/L的污水處理廠數(shù)量和規(guī)模占比分別為16.8%和11.2%,雨季進(jìn)水濃度降低的問題也并不顯著,降雨對BOD的影響并不突出。以上數(shù)據(jù)分析結(jié)果表明,合流制并非我國污水處理廠進(jìn)水濃度偏低的根本原因,大部分污水處理廠雨季并未呈現(xiàn)出明顯的降雨稀釋問題,而旱季也并沒有表現(xiàn)出應(yīng)有的高濃度水平,污水處理廠旱季濃度提升必將成為今后提質(zhì)增效工作的重要內(nèi)容。
02 低收集率及污水低濃度的成因分析
2.1 關(guān)于城市生活污水集中收集率
城市生活污水集中收集率是應(yīng)對排水行業(yè)綠色高質(zhì)量發(fā)展戰(zhàn)略導(dǎo)向,實現(xiàn)排水行業(yè)由水量處理考核向污染物收集處理考核轉(zhuǎn)變的重要指標(biāo),也是排水行業(yè)管理方式轉(zhuǎn)變的一次探索。該指標(biāo)于2019年通過《城鎮(zhèn)污水處理提質(zhì)增效三年行動方案(2019—2021年)》政策文件首次向社會公開,2021年4月住房城鄉(xiāng)建設(shè)部、國家統(tǒng)計局《城市(縣城)和村鎮(zhèn)建設(shè)統(tǒng)計調(diào)查制度》正式向社會公布了該指標(biāo)的定義和核算方法,即報告期內(nèi)向污水處理廠排水的城區(qū)人口占城區(qū)用水總?cè)丝诘谋壤嬎愎奖硎鰹椋?/p>
其中,人均日生活污染物排放量指每人每天排放的生活污水污染物的量,以BOD計,根據(jù)《室外排水設(shè)計規(guī)范》(GB50014-2006)確定為45g/(人·d),各地也可根據(jù)中國城鎮(zhèn)供水排水協(xié)會團(tuán)體標(biāo)準(zhǔn)《城鎮(zhèn)居民生活污水污染物產(chǎn)生量測定》(T/CUWA 10101—2021)開展測定并提出修改建議。
根據(jù)公式(1)和(3),城市生活污水集中收集率計算公式最終可表述為:
根據(jù)公式(4),其分母是指居民日常生活產(chǎn)生,隨污水排放并應(yīng)被污水處理廠收集處理的污染物量,而分子則是指城鎮(zhèn)污水處理廠接納的生活污水污染物總量,也即城市生活污水集中收集率可以更直觀的表征為污水處理廠收集的生活污水污染物量占應(yīng)收集生活污水污染物量的比值。生活污水污染物在管網(wǎng)系統(tǒng)內(nèi)沉積、反應(yīng)衰減,以及非生活污水?dāng)D占污水管道和污水處理廠所致的生活污水溢流排放流失都可能是造成污水處理廠進(jìn)水濃度和城市生活污水集中收集率偏低的直接原因。
2.2 管網(wǎng)沉積對濃度和收集率的影響
污水收集系統(tǒng)污染物的沉積衰減會同時影響污水處理廠進(jìn)水濃度和城市生活污水集中收集率指標(biāo),尤其是沉積物的厭氧水解和降雨沖刷入河,是導(dǎo)致很多城市生活污水集中收集率長期偏低的重要原因。
化糞池不一定會成為污染物衰減的主要貢獻(xiàn)者。化糞池是城市排水系統(tǒng)不健全階段的重要產(chǎn)物,作為城市污水收集系統(tǒng)重要的源頭“沉淀池”,正常運維的化糞池通?梢匀コ60%~80%的SS和20%~30%的COD。但化糞池對污染物的去除能力與運維狀態(tài),尤其是實際停留時間直接相關(guān),按規(guī)范要求化糞池一般應(yīng)3~12個月進(jìn)行清掏,因此剛投入運行或定期清掏的化糞池,實際停留時間相對較長,對污染物的去除效率一般也相對較高。但由于權(quán)屬和相關(guān)費用問題,我國大部分居民小區(qū)的化糞池通常只有在出現(xiàn)冒溢或其他事故時才會進(jìn)行清掏作業(yè),從而導(dǎo)致許多化糞池長期被沉淀物填滿,變成了污水的常規(guī)排放通道,基本不具備污染物沉淀去除的功效。因此化糞池的污染物去除效率評價,一般應(yīng)兼顧化糞池的運維和清掏狀況。
低流速管網(wǎng)可能成為污染物沉積的重要場所。污水收集管網(wǎng),尤其是合流制管網(wǎng)也會成為生活污水污染物的重要“沉淀池”,其沉淀狀況與管網(wǎng)日常運行流速直接相關(guān)!妒彝馀潘O(shè)計標(biāo)準(zhǔn)》GB 50014要求污水管道在設(shè)計充滿度下的流速應(yīng)為0.6 m/s,雨水管道和合流管道在滿流時的流速應(yīng)為0.75 m/s,這不僅是對工程設(shè)計的要求,也是對確保顆粒物不發(fā)生沉積的管網(wǎng)日常運行要求,部分發(fā)達(dá)國家甚至要求污水管網(wǎng)的日常運行流速應(yīng)不低于0.75 m/s。但我國很多城市的污水管道流速只有0.1 ~ 0.3 m/s甚至更低的水平,污水中的顆粒物攜帶可吸附污染物在管道內(nèi)沉積,使污水管道成為典型的“沉淀池”,部分城市污水管道雨季來臨前的沉積深度甚至可達(dá)到50%,其VSS/SS比值達(dá)到20%以上,是污水處理廠進(jìn)水濃度偏低的一個重要原因;而后這些沉積物會在降雨期間隨雨水沖刷進(jìn)入污水處理廠或城市河湖水體,成為生活污水污染物流失、城市生活污水集中收集率偏低的重要原因。提高污水管網(wǎng)流速,避免管網(wǎng)沉積是現(xiàn)階段快速實現(xiàn)污水處理廠進(jìn)水濃度和城市生活污水集中收集率同步提升的最簡單有效措施。
污水管道沉積或許是污水處理廠低碳高氮磷的重要原因。居民生活污染物在污水管道沉積過程中還會發(fā)生厭氧水解或微好氧反應(yīng),有機(jī)氮磷很容易被氨化或磷酸鹽化,由沉淀物轉(zhuǎn)變?yōu)殡x子態(tài)并再次進(jìn)入污水中,從而使管道底泥具有高碳低氮磷的特征。筆者完成的北方某城市污水管網(wǎng)底泥檢測結(jié)果顯示,COD/TN通?蛇_(dá)(30~50):1,COD/TP可達(dá)(80~100):1。按照排水系統(tǒng)污染物的物料平衡關(guān)系,沉積物中的COD/TN和COD/TP比增大也就意味著污水處理廠進(jìn)水通常呈現(xiàn)低COD/TN和COD/TP比問題,因此管道沉積及沉積物的生化反應(yīng)可能是我國城鎮(zhèn)污水處理廠普遍存在低碳高氮磷問題的重要原因,污水管網(wǎng)沉積控制可能是緩解污水處理廠碳源不足,降低碳源和除磷藥劑投加量,實現(xiàn)排水系統(tǒng)低碳運行的重要途徑。
管道降水位提流速要提前研判河湖水倒灌風(fēng)險。根據(jù)流量、流速和過水?dāng)嗝婷娣e的計算關(guān)系,在流量一定的情況下,過水?dāng)嗝婷娣e越小則流速越高,而減小過水?dāng)嗝婷娣e則意味著需要降低管網(wǎng)運行水位,也就是說在處理水量一定的情況下提升流速就必須要降低運行水位。但位于城市河湖周邊或埋在地下水位線之下的污水管網(wǎng),多數(shù)會因各種原因而與城市河湖或地下水之間形成通道,而且部分通道還涉及到城市排水安全等問題,在這種情況下降低管道水位必然導(dǎo)致更多的河湖水或地下水進(jìn)入污水管網(wǎng),如長江經(jīng)濟(jì)帶某污水處理廠進(jìn)行集水井降水位運行試驗期間發(fā)現(xiàn)大量河水通過沿河主干管涌入,導(dǎo)致污水處理廠濃度持續(xù)降低。部分城市降水位經(jīng)驗表明,只有做好管網(wǎng)水位與城市河湖水位的協(xié)調(diào),適度降低城市河湖運行水位,才可能真正意義上實現(xiàn)管網(wǎng)降水位提流速,如南方某城市部分河道水位由2~3米降低至0.5米左右后,原長期滿流的污水管網(wǎng)非常容易的實現(xiàn)了運行水位降低至60%左右設(shè)計充滿度的水平;長江經(jīng)濟(jì)帶某個被中央環(huán)保督察通報的污水處理廠前溢流口,因上游河道降水位整治,污水處理廠進(jìn)水量由超過10萬m3/d銳減至不足6萬m3/d。大量工程經(jīng)驗表明,城市河湖降水位對恢復(fù)管網(wǎng)正常運行水位,減少河湖水體倒灌污水管網(wǎng)具有非常顯著的作用。
2.3 非生活污水摻混對濃度和收集率的影響
氨氮屬于物態(tài)相對穩(wěn)定的離子態(tài)物質(zhì),在有COD和BOD存在的污水管網(wǎng)中一般不會發(fā)生明顯的硝化或其他反應(yīng)而消耗。另外,污水中含有的氨基酸等有機(jī)氮類物質(zhì)還會在管道轉(zhuǎn)輸過程中氨化為氨氮并釋放到水中,使污水中的氨氮濃度通?梢员3衷40 mg/L甚至更高水平。而隨著環(huán)境監(jiān)管力度的加大,入滲入流或排入污水管網(wǎng)的地表水、地下水、工業(yè)廢水等通常具有低氨氮濃度的顯著特征。也就是說排入污水管網(wǎng)的非生活污水氨氮濃度會明顯低于居民生活污水氨氮濃度,因此可將氨氮作為非生活污水排入情況的重要評價核算指標(biāo),作為污水收集管網(wǎng)效能評估的重要參考指標(biāo)。南方地區(qū)污水處理廠旱季相對較低的氨氮濃度,實際上是上游大量低氨氮濃度非生活污水排入摻混的直接結(jié)果。低氨氮濃度非生活污水排入污水管網(wǎng),不僅會對生活污水形成稀釋,還會擠占管網(wǎng)和污水處理廠的有效空間,引發(fā)污水溢流問題,導(dǎo)致城市生活污水集中收集率持續(xù)偏低,是排水行業(yè)的重大痛點難點,也是污水處理提質(zhì)增效工作的重點方向。通過氨氮或其他簡單有效的指標(biāo)快速識別非生活污水摻混問題,并通過工程或技術(shù)手段將非生活污水清退出污水管網(wǎng)是快速提升污水處理廠進(jìn)水濃度和城市生活污水集中收集率的最有效措施。
非生活污水對污水污染物影響的另一個重要特征是氧化還原反應(yīng)或生物合成反應(yīng)導(dǎo)致的污染物衰減。T. Hvitved-Jacobsen等研究提出污水管網(wǎng)好氧狀態(tài)下的溶解性COD衰減速率通常可達(dá)10~30 mg/(L·h),Kamma Raunkjær等提出好氧狀態(tài)下的COD和溶解性COD衰減去除率分別可達(dá)14%和25%,Naoya Tanaka提出厭氧狀態(tài)下的溶解性COD衰減速率一般在0~12 mg/(L·h)。上述好氧狀態(tài)的研究結(jié)論多數(shù)是基于溶解氧的影響,實際上我國摻混污水管網(wǎng)的高排放標(biāo)準(zhǔn)工業(yè)廢水、施工降水或基坑排水、地表地下水,以及再生水補(bǔ)水型和水生植物生態(tài)型城市河湖水,不僅存在溶解氧,還存在各種化學(xué)氧化物,呈現(xiàn)出相對較高的ORP,這些氧化性物質(zhì)也會與污水中的還原性有機(jī)物發(fā)生反應(yīng),導(dǎo)致還原性有機(jī)物衰減,成為污水處理廠進(jìn)水BOD濃度和城市生活污水集中收集率偏低的重要原因。
高排放標(biāo)準(zhǔn)工業(yè)廢水多數(shù)采用了強(qiáng)化生物處理和高級氧化深度處理工藝,出水表征為相對較高的DO和ORP值,尤其是芬頓、催化氧化等強(qiáng)氧化工藝的出水ORP值可達(dá)1000 mV甚至更高水平,具有比較高的“氧化性”。施工降水或基坑排水多數(shù)來自于地下水、淺層地下水,以及城市河湖水等,通常具有一定的ORP值和NO3--N濃度,部分地區(qū)的地表、地下水NO3--N濃度甚至可高達(dá)20多mg/L水平。污水處理廠尾水通常也表征為比較高的ORP值,尤其是隨著疫情防控對污水處理廠尾水消毒要求的提高,出水ORP值達(dá)到400 mV以上的情況變得非常普遍。這些水進(jìn)入污水管網(wǎng),必然會與生活污水中的有機(jī)物發(fā)生反硝化反應(yīng)或氧化還原反應(yīng)而使污染物衰減,導(dǎo)致生活污水污染物濃度降低。
城市水體中的沉水植物會通過日間的光合作用向水體持續(xù)緩慢釋放“純氧”,使沉水植物周邊區(qū)域水的日間DO長期保持在超飽和的10 mg/L以上水平,而ORP值多數(shù)可達(dá)300 mV以上水平;夜間則因沉水植物的呼吸作用,DO值可降低至接近0 mg/L,ORP降低至50 mV以下。因此如果沉水植物為主的城市河湖水滲漏或倒灌至污水收集管網(wǎng),也會導(dǎo)致生活污水污染物的衰減損耗。
當(dāng)然,不規(guī)律或不連續(xù)排放的非生活污水還可能導(dǎo)致污水管網(wǎng)的階段性溢流,很大程度上影響污水處理廠進(jìn)水濃度和城市生活污水集中收集率。實際工程證明,通過污水管網(wǎng)降水位的模式增大管網(wǎng)調(diào)蓄空間,可有效應(yīng)對排入水量波動所引發(fā)的階段性冒溢問題,真正意義上實現(xiàn)健康的排水系統(tǒng)和城市水環(huán)境系統(tǒng),如某服務(wù)業(yè)每天中午1點左右開始向管網(wǎng)排放3000 m3左右污水,導(dǎo)致下游點位每天下午2~5點期間溢流而被中央環(huán)保督察通報,在綜合采取了服務(wù)業(yè)調(diào)蓄均勻排水、管網(wǎng)運維單位提前降水位騰容積和溢流口增高改造擴(kuò)容積等綜合措施后,徹底解決了下游點位的階段性溢流問題。
03 結(jié)論與建議
(1)我國合流制管網(wǎng)占比明顯低于歐美等發(fā)達(dá)國家,但污水處理廠進(jìn)水BOD濃度,尤其是旱季濃度偏低的問題比較突出,合流制并不是引發(fā)BOD濃度偏低的根本原因,應(yīng)將旱季濃度提升作為下一步提質(zhì)增效工作的重點方向。
(2)污水收集管網(wǎng)非降雨時段污染物沉積與降雨時段的高流速沖刷流失是我國很多城市生活污水集中收集率偏低的重要原因,基于日常運行流速提升的管道沉積控制應(yīng)作為現(xiàn)階段的主要攻關(guān)方向。
(3)污水管網(wǎng)降水位提流速要強(qiáng)化排水的系統(tǒng)性,重點關(guān)注水體沿線管網(wǎng)受水體水位的影響以及大埋深管網(wǎng)受地下水的影響等問題。
(4)高排放標(biāo)準(zhǔn)工業(yè)廢水、施工降水或基坑排水、地下水和城市河湖水等相對“清潔”的非生活污水倒灌或入滲污水管網(wǎng),是污水處理廠進(jìn)水濃度,尤其NH3-N、磷酸鹽等相對穩(wěn)態(tài)的溶解性水質(zhì)指標(biāo)降低的主要根源;非生活污水的高DO和ORP所表征的強(qiáng)“氧化性”更是造成生活污水還原性物質(zhì)衰減,導(dǎo)致污水處理廠進(jìn)水BOD(COD)濃度和城市生活污水集中收集率普遍偏低的重要原因。污水收集管網(wǎng)的非生活污水治理應(yīng)作為現(xiàn)階段濃度和效能提升的重點工作。
使用微信“掃一掃”功能添加“谷騰環(huán)保網(wǎng)”